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Abstract—Reinforcement learning (RL), in conjunction with
attack graphs and cyber terrain, are used to develop reward
and state associated with determination of optimal paths for
exfiltration of data in enterprise networks. This work builds
on previous crown jewels (CJ) identification that focused on
the target goal of computing optimal paths that adversaries
may traverse toward compromising CJs or hosts within their
proximity. This work inverts the previous CJ approach based
on the assumption that data has been stolen and now must be
quietly exfiltrated from the network. RL is utilized to support
the development of a reward function based on the identification
of those paths where adversaries desire reduced detection. Re-
sults demonstrate promising performance for a sizable network
environment.

Index Terms—attack graphs, reinforcement learning, exfiltra-
tion paths, penetration testing, cyber terrain

I. INTRODUCTION

The National Institute of Standards and Technology (NIST)
special publication 800-53 revision 5 states that exfiltration1

(also called exfil) is the unauthorized movement of data within
a network [1]. Many times, cyber attacks are considered
successful if they exfiltrate data for monetary, disruptive, or
competitive gain. Detection of exfiltration can be plagued with
technical challenges as adversaries routinely encapsulate data
within typically allowable protocols (e.g., http(s), DNS) which
make it significantly harder to defend. Additionally, adver-
saries have been known to prefer traversing certain network
paths for data theft to reduce detection and tripping cyber
defenses so they do not raise suspicions.

Heisting data requires two different plans: a plan to get
to the data and a plan to exfiltrate the data without getting
caught. Much effort in the cybersecurity industry is devoted
to identifying and preventing points of weakness that allow
authorized (i.e., adversarial) entry into a network. The most
common exfiltration opportunity is moving data from a local
network to an adversary network via the internet. To perform
this, an adversary must gain access to the data on an organiza-
tion’s network, then send the data to a place off their network.

1NIST 800-53r5 [1] states specifically that exfiltration lies within security
control SC-07(10) for boundary protection to prevent unauthorized data
movement (exfiltration).

Most organizations are focused on preventing network access,
which leaves gaps in defenses for access from the network to
the internet.

Much of the literature on automating penetration testing
using RL has a focus on the way networks can be accessed
(i.e., infiltration [2]–[10]). And while some consider using
RL to detect exfiltration [11], [12], RL for conducting post-
exploitation activities like exfiltration are under-studied [13].
Maeda and Mimura apply deep RL to do exfiltration, however,
they do not use a standard attack graph construct, but rather
define states using an ontological model of the agent and define
actions using task automation tools. [13]. Their approach has
several limitations:
• The RL agent’s inputs and outputs are greatly abstracted

away from network structure, path structure, and cyber
terrain, thereby limiting the ability to anchor agents to
the real computer network.

• The exfiltration methodology does not leverage auto-
mated frameworks for attack graph construction like
MulVal [14] or the vulnerability- and bug-reporting com-
munities (e.g., via the Common Vulnerability Scoring
System (CVSS) [15]).

• The output of the RL-based exfiltration method is not
easily interpretable in terms of networks, their paths
and configurations, and risks preferences regarding their
traversal.

Whereas Maeda and Mimura’s use of task automation tools
and ontologies make their proposed exfiltration method a
highly automated means of actually performing exfiltration,
this paper presents an alternative approach more tailored
to automating exfiltration path discovery for cyber operator
workflows.

This paper presents an RL method for discovering exfiltra-
tion paths in attack graphs. This paper proposes and combines:

1) An approach for modeling service-based defensive cyber
terrain in dynamic models of attack graphs.

2) An RL-based algorithm for discovering the top-N exfil-
tration paths in an attack graph.

The presented methodology is aligned with a focus on network
structure and configuration, path analysis, and cyber terrain.978-1-6654-2141-6/22/$31.00 ©2022 IEEE
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It maintains MulVal’s focus on scalability and leverages
the vulnerability- and bug-reporting communities via CVSS.
Its outcomes can be directly understood as paths through
networks, as is highlighted in a detailed discussion of the
results. To support reproducibility, the RL solution methods,
experimental design, and network model are specified in great
detail.

This paper is structured as follows: First, background on
RL for penetration testing and on constructing Markov de-
cision processes (MDPs)from attack graphs is given. After,
the methods for modeling defensive terrain and discovering
exfiltration paths are presented. Then, experimental design is
described, results are presented, and findings are discussed.
The paper concludes with remarks on modeling decisions, a
synopsis, and a statement on future work.

II. RL AND PENETRATION TESTING

A. Reinforcement Learning Preliminaries

RL describes the paradigm of learning by interaction with
an environment [16]. This contrasts directly with supervised
learning where an oracle is queried for ground-truth labels.
More formally, it describes a set of solution methods for
approximate dynamic programming [17]. It also addresses
challenges associated with large and complex environments
by approximating various aspects of planning and decision-
making.

With respect to RL, agents learn by taking actions in envi-
ronments E and receiving rewards. Commonly, environments E
are modeled as MDPs. Finite MDPs are tuples {S,A,Φ, P,R}
where S and A are states and actions, Φ ⊂ S × A are
admissible state-action pairs, P : Φ × S → [0, 1] is the
probability transition function, and R : Φ → R where R are
the reals is the expected reward function. An agent interacts
with an environment E = {S,A,Φ, P,R} by taking actions
at and receiving states st+1 and rewards rt+1.

The learning procedure can be described in general terms
as follows. Let Rt be the discounted sum of future rewards,

Rt =

∞∑
k=0

γkrt+k, (1)

where γ ∈ (0, 1) is a discount factor. The action value function
Qπ(s, a) can then be defined as

Qπ(s, a) = E[Rt|st = s, a], (2)

where π is a policy mapping states and actions (s, a) to
the probability of picking action a in state s. The learning
procedure aims to find the optimal action value function
Q∗(s, a),

Q∗(s, a) = max
π

Qπ(s, a). (3)

Deep Q-learning (DQN) approximates Q∗ with a neural net-
work Q(s, a; θ), where θ are parameters of the neural network
[18], [19].

Alternatively, instead of learning the Q function, policies
can be parameterized and learned directly. In policy gradient
methods, the reward function is defined as

J(θ) =
∑
s

dπ(s)V π(s) =
∑
s

dπ(s)
∑
a

πθ(a|s)Qπ(s, a),

(4)
where dπ(s) denotes the stationary distribution of Markov
chain for πθ. According to policy gradient theorem, the
gradient ∇θJ(θ) is given by

∇θJ(θ) ∝
∑
s

dπ(s)
∑
a

Qπ(s, a)∇θπθ(a|s). (5)

The policy gradient theorem provides a basis for learning a
parameterized policy. However, it suffers from high variance
of gradient and instability. To overcome this, the value of the
state V π(s), the value of using policy π in state s is introduced
as the baseline:

Aπ(s, a) = Qπ(s, a)− V π(s) (6)

where Aπ(s, a) is called the advantage. And the gradient is
now given as

∇θJ(θ) = Es∼ρπ,a∼πθ
[∇θ log πθ(s, a)Aπ(s, a)] (7)

These gradients serve as the basis for the advantage actor-
critic method (A2C), a standard policy gradient method in
deep reinforcement learning [20].

B. RL for Penetration Testing
While deep RL has been applied to cybersecurity broadly

[21], it has only recently been pursued as a tool for penetration
testing [2]–[10]. While approaches and uses vary greatly, many
use attack graphs to model the network [22]. Note, attack
graphs model the network formed by computer vulnerabilities
and exploits, creating an abstraction that does not necessarily
match the topology of the physical network, as shown in
Figure 1. The use of attack graphs is a distinguishing character
of RL for penetration testing from RL for cybersecurity
broadly [21].

Most frequently, RL is tasked with simply traversing a
network from one initial node to one terminal node—(i.e.,
finding paths through networks) [2]–[9]. Gangupantulu et al.,
in contrast, emphasize a more complex task of using RL to
perform CJ analysis [10]. Here, similar to Gangupantulu et
al., the presented RL method solves a more complex task and
serves as a targeted tool for cyber operators to improve the
efficiency of operator workflow in penetration testing. It does
not automate exfiltration entirely.

RL for penetration testing has made frequent use of DQN
[3], [7]–[10]. Nguyen et al., alternatively, propose an RL-based
approach to penetration testing that uses two agents: one for
iteratively scanning the network to build a structural model
and another for exploiting the constructed model [23]. In our
first attempt at performing RL on the network presented later
on, we attempt to use the DQN solution method but it did
not converge, leading us to explore alternative agents. We use
Nguyen et al.’s double agent method where both agents are
A2C. We compare to the standard A2C algorithm.



Fig. 1: RL for penetration testing requires abstracting from real
computer networks described by information such as packet
flows, into the mathematical models with which RL agents
interact.

III. MDPS FROM ATTACK GRAPHS

There are many solution methods for modeling attack
graphs [24]. Key trade-offs relate to scalability, observability,
accuracy, and reliability. In particular, partially observable
Markov decision processes (POMDPs) are well-argued to be a
more realistic representation of computer networks than MDPs
[25]. In POMDPs, actions are stochastic and network structure
and configuration are uncertain. But POMDPs have not been
shown to scale to large networks and require modeling many
prior probability distributions [26]. Additionally, while RL for
MDPs is well-established, RL for POMDPs is still under fun-
damental development [27]. Currently, MDPs are the standard
in RL for penetration testing [2]–[10].

The CVSS [15], [28] is used as a scalable approach for
adding behavior to attack graphs [29], [30]. It is the numerical
representation of an information security vulnerability. These
scores represent an attempt at providing a standardized way
of evaluating the severity of threats posed by a particular
vulnerability. This takes into consideration both how easy
it is to exploit this vulnerability, and also how severe the
consequences of such an exploit would be.

While some authors in RL for penetration testing use

alternative methods [2]–[5], CVSS is emerging as a standard
approach to modeling MDPs over attack graphs for RL [6]–
[10]. Gangupantulu et al. draw from the literature to define a
vanilla CVSS-MDP for point-to-point network traversal [9].

CVSS-MDPs use the attack graph to define the state-action
space S ×A and CVSS to define the reward R and transition
probabilities P [9]. CVSS-MDP assigns transition probabil-
ities P using the attack complexity, where the ranks low,
medium, and high are associated with transition probabilities
of 0.9, 0.6, and 0.3. The reward for arriving at a host is given
by,

Base Score +
Exploitability Score

10
.

The agent receives −1 reward for each step and receives 100
reward for arriving at the terminal node. Episodes terminate
when the terminal state is reached after number of steps (i.e.,
actions).

While CVSS scores are useful in practice and currently
considered an industry standard, it is important to remember
that a measure of threat severity is not the same as a measure
of risk and that they do not generalize to give information
that’s useful for evaluating an entire attack path through a
network. From the perspective of an attacker, a greater risk
means a greater chance of detection. While the CVSS scores
of vulnerabilities do inform the probability of success of any
particular exploit in the models here, the real driving force
of RL agent behavior should be centered around concepts of
terrain [31]. The details of this reward engineering of terrain
are given in the following.

IV. METHODS

The following subsections describe the presented methods
for adding service-based risk penalties as defensive terrain
in CVSS-MDPs and the algorithm for discovering the top-N
exfiltration paths in a network, shown in Algorithm 1.

A. Defensive Terrain in CVSS-MDPs

Gangupantulu et al. argue that models of cyber terrain can
be layered onto CVSS-MDPs, and do so by adding firewalls
between subnets, and assigning protocol-specific negative re-
ward and transition probabilities for traversing firewalls [9].
Gangupantulu et al. later layer on additional notions of cyber
terrain by using RL as part of a methodology for modeling
footholds and pivot points nearby the 2-hop network of CJ
nodes [10].

We propose a new approach for modeling service-based
defensive terrain in CVSS-MDPs. Instead of explicitly defining
the defenses in the states of the MDP, we make assumptions
similar to what a human attacker would make: even if the
attacker cannot detect a defense directly, by their experience
they can infer the presence of defenses based on the services
available on a given host. Common network defenses can
include host-based antivirus and malware detection software,
inter-subnet router firewalls, or authentication log tracking.

We engineer rewards for defensive terrain that are additive,
or, otherwise put, are layered on top of the CVSS-MDP



Algorithm 1 Exfiltration Paths via RL (EP-RL)

Require: MDP, initial node i, exit nodes J , N
Ensure: N paths from initial node to top-N exit nodes

for i in N do
path← fRL(MDP, i, J) . Optimal path i→ j, j ∈ J
paths← store(path)
J ← J \ j . Remove j from J

end for
return paths

rewards. A quantified negative reward structure is used to
itemize the cost of attacker actions. The criteria of interest
are (1) a risk hierarchy applied to service categories and (2)
the type of action performed by the agent on a host. The
requirement to implementing these criteria is to unify them in a
way the agent could enumerate. This is achieved by creating an
array of actions and services and applying an individual reward
to each combination. The negative reward can be assigned
using (1) action type, here, exploiting or scanning, and (2)
services.

Services are derived from four principal categories: authen-
tication, data, security, and common. To create a negative
reward, a hierarchy of costs associated with attacking these
services was applied. When performing an exploiting action,
this hierarchy applies authentication as a reward of -6, data
as a reward of -4, while both security and common have
a reward of -2. When performing a scanning action, the
reward is increased by 1 (i.e., -5, -3, -1, respectively). These
rewards represent a combination of factors highlighting the
risk to organizations presented from these services. Different
organizations or operators may prefer a different scaling. It
is important to note that the values of these negative rewards
are relative, and as such they can be as a set scaled together
to represent different risk preferences. When taking an action
on a host with multiple services, the agent applied the highest
cost to the action’s reward. This was a decision that presumes
a leading practice approach by security practitioners to apply
security controls based upon the ‘riskiest’ service found on
a host (i.e., a service known to be at greater exposure to
the network edge or greater business loss if exploited). By
syncing our rewards to this presumption, the agent calculates
a more realistic quantitative measurement of risk as it attempts
to converge to an optimal attack path.

B. Discovering Exfiltration Paths with RL

In contrast to Gangupantulu et. al.’s CJ analysis method
[10], our discovering exfiltration paths method uses multiple
terminal states corresponding to the various exit nodes of
interest and only a single initial node. The agent then interacts
with the network in an episodic fashion to learn which is the
best exit node with respect to expected reward. To provide
a comprehensive path analysis for cyber operators using the
tool, the top-N exit nodes are found by iteratively solving the
MDP to find the best exit node, removing the best exit node,
and solving the MDP again. This algorithm is described in

Algorithm 1. Notably, the agent iteratively solves the problem
of finding a path to a single exit in the joint set of exits. This
avoids the brute force approach of creating an MDP for each
exit node, solving each MDP, then ranking the paths.

V. EXPERIMENTAL DESIGN

In the following subsections the network, state-action space,
and RL algorithm implementation are described.

A. Network Description

The experimental network where the simulations are run
was derived from an architectural leading practices approach to
represent enterprise network configurations and deployments.
The network contains:

• Defined Subnets - 9
• Defined Hosts - 26
• Types of Operating Systems - 2
• Privilege Access Levels - 3
• Network Services - 9
• Host Processes - 6
• Network Firewall Rulesets - 39

The network is visualized in Figures 3, 4, and 5.
Subnets are constructed to represent a grouping of hosts

with commonly segregated services utilized for enterprise
information technology administration to include server ser-
vices, database services, client workstation networks, edge
and DMZ services, and core services that orchestrate least-
privilege or zero-trust security (i.e., domain controllers and
public-key infrastructure) [32]. Hosts and network firewall
rulesets are configured to deliver a representation of common
ITS communication requirements between these subnets that
allow daily functions of an enterprise ITS department and
business operations.

The services within this network are laid out with the
presumption of common security controls and monitoring
software one would see within an enterprise network. These
presumptions include the following expectations:

1) Authentication services are exposed to the internet
through a Virtual Private Network (VPN).

2) Web services are exposed to the internet through a
secured edge network zone (DMZ).

3) Services exposed to the internet are monitored.
4) Firewalls are monitored at a higher rate than other

network devices.
5) Security services have the most inherited security con-

trols.
6) Authentication services and firewall services, if ex-

ploited, have the greatest secondary and tertiary impacts
to a network’s overall security profile.

7) Network security rules only apply allowlists.
8) Host and network assets apply principles of least-

privilege when authorizing privileges for account access
and use.



B. Environment Description

For the environment, each host is represented by an 1D
vector that contains its status (compromised, reachable, dis-
covered or not) and configurations (address, services, operating
system and processes). The environment combines all the
vectors for hosts in the network as a entire state tensor.
Thus, each state contains descriptions of all hosts. The actions
are defined as an operation performed on a specific target
host. The actions consist of 6 primitive actions for scanning,
exploiting, or privilege escalation. The action type and target
host configuration must align or the action will fail. For the
environment, the initial host for exfiltration is set on (6, 0),
while the terminal hosts are set on (1, 0), (2, 0) and (4,
0), which are all connected to the public internet, where (a,
b) denotes host b in subnet a. The initial node is set as
compromised, reachable and also discovered at the beginning
to make it possible for the agent to perform further actions.
The exfiltration goal is reached if the agent compromises
any host among them and obtains root access. If the goal is
reached, the agent is given a high reward (set as 100 for our
experiment).

C. RL Implementation

The experiment is conducted based on two models: A2C
model and the double agent architecture [23]. Both agents in
double agent use the A2C algorithm. For both, the learning rate
is set as 0.001 and the discounted factor is set as 0.99. We use
Adam as the optimizer of our networks. Both of the models are
trained for 4,000 episodes with a maximum of 3,000 steps in
each episode. If the maximum number of steps is reached, the
episode terminates and the agent receives 0 terminal reward.
Both the A2C model and the structuring agent of double agent
use deep neural networks (DNNs) with three fully connected
layers of size 64, 32, and 1 and the exploiting agent of the
double agent uses a DNN with two fully connected layers of
size 10 and 1. All DNNs use tanh activation functions for
non-output layers and softmax for the output layer.

D. Sensitivity Analysis

The experiments run the A2C and double agent algorithms
to convergence. To study the effect of the scale of service-
based penalties on the convergence of the agents and on the
paths they discover, the exploiting and scanning service-based
penalties are scaled by a factor of 1.3, 1.0, and 0.7. These
values correspond to risk preferences that we term risk-averse,
risk-neural, and risk-accepting, respectively.

VI. RESULTS

To observe the convergence of our models, we plot the steps
and the reward versus episodes and the result is shown in Fig.
2. It can be observed that both of our models converge within
1,000 episodes. It could also be noticed that double agent
converges slower than the A2C agent, which is expected con-
sidering that the double agent is more complex and contains
two A2C models that learn simultaneously.

A. RL Performance

When reviewing the A2C and double agent as they reach
convergence, A2C uses a similar amount of episodes to reach
an optimal path regardless of the scaling factor. In the double
agent model, the risk-accepting agent reaches an optimal path
much quicker than the risk-neutral and risk-adverse agents.
Additionally, the double agent model converges quickly at first,
and then plateaus. This suggests the double agent model can
quickly arrive at near optimal policies.

B. Agent’s Behavior Compared to Human Expectations

The paths results from the nine experiments are shown in
Table I. The simulations represent the top three paths for
all three risk preferences. In addition to the paths, the table
shows the number of steps, the reward and the cumulative
probability score. These cumulative probability score are not
directly the CVSS scores of the exploits, but are proprietary
scores designed to play similar role. It is important to note that
the ordering of these scores is not the same as the ordering
of the reward. This is in agreement with the expectation that
the measure of risk (tracked by the reward) does not have to
track linearly with a vulnerability score.

Unbeknownst to the rest of the authors, the cyber security
operations expert who crafted the simulated networks for the
generated attack paths and network topology included two
intentional misconfigurations within the host-service assign-
ments. These misconfigurations simulated real-world experi-
ences resolving enterprise network incidents where exfiltration
of data occurred. The primary goal of these misconfigurations
is to represent flaws in network design that were exploited by
actual attackers for exfiltration in actual enterprise networks.
If the agents can deduce (without explicit design) this mis-
configuration, it would be a compelling example of how this
reward engineering can produce human like behavior.

The significant configuration within our results was on host
(3,2). The PKI service was extended into subnet (3), the
server subnet. In published leading practices for securing PKI
[32], this service is included in the most privileged tier of an
environment and requires a specific privileged account autho-
rization ’Crytpographic Operator’ [32]. As such it should only
be accessible utilizing hardware and software with enhanced
security controls. These leading practices also require this
service to only reside in a secure subnet alongside other servers
and appliances with similarly privileged security requirements.
When this service is allowed to operate as a node within
the general server subnet (i.e., regular business applications),
it exposes the network firewall rules to exploitation when
exfiltrating data from the private key repository database.

In the resulting optimal path diagrams identified by the
agent, host (3,2) was the most traversed node. Reviewing
this result shows that the misconfiguration was successfully
identified and exploited by the agent when defining an optimal
path.



Fig. 2: Agent learning over episodes. The left plots show the average reward over episodes and the right plots show the average
number of steps taken over episodes. The top plots are the results from running RL using an A2C agent and the bottom plots
show the results when leveraging the double agent methodology [23]. The color of the lines reflects how heavily incentivized
an agent is to avoid detection: blue for risk-accepting, green for risk-neutral, and red for risk-averse.

Path Rank Scale Factor Path Steps Reward Cumulative Probability Score

Best Path
0.7 (6, 0)→ (3, 0)→ (2, 0) 12 57.8 2.9 + 2.9 = 5.8
1.0 (6, 0)→ (3, 2)→ (1, 0) 11 62 2.9 + 2.9 = 5.8
1.3 (6, 0)→ (3, 0)→ (1, 0) 5 68.3 1.9 + 2.9 = 4.8

Second
Best Path

0.7 (6, 0)→ (3, 2)→ (1, 0) 19 46.9 2.9 + 4.9 = 7.8
1.0 (6, 0)→ (3, 0)→ (2, 0) 16 24 2.9 + 4.8 = 7.7
1.3 (6, 0)→ (3, 2)→ (1, 0) 19 33.1 1.9 + 2.9 = 4.8

Third
Best Path

0.7 (6, 0)→ (3, 0)→ (1, 1)→ (4, 0) 15 41.3 1.9 + 1.9 + 2.4 = 6.2
1.0 (6, 0)→ (3, 2)→ (1, 0)→ (4, 0) 24 17 3.9 + 1.9 + 7.5 = 13.3
1.3 (6, 0)→ (3, 2)→ (1, 0)→ (4, 0) 22 -6.1 1.9 + 2.9 + 6.3 = 11.1

TABLE I: Table of the top-3 exfiltration paths found by double agent. Scale factor denotes the risk-accepting (0.7), risk-neutral
(1.0), and risk-averse (1.3) scaling of the penalty for services. Path gives the shortest path from the initial node to exit node,
and is derived from the set of actions taken by the converged agent in an episode. Steps and reward, in contrast, refer to the
optimal performance of the agent in an episode (i.e., not just the actions taken to form the path). Cumulative probability score
reports a custom, CVSS-like vulnerability scoring of the path.

VII. DISCUSSION

A. Benefits of Approach

The presented methods can provide security defenders and
operators three immediate benefits:

1) Iterate security control implementations within enter-
prise networks by prioritizing the most impactful con-
trols first.

2) Quantify decreased risk factor for each iteration of new
security controls via the reward.

3) Deliver integrity to the results by matching the attacker
actions taken to expected actions for each risk prefer-
ence.

This RL approach associates to the integrity component
of the cybersecurity CIA triad (confidentiality, integrity, and
availability). Upon completion of the modeling simulations,
the results were analyzed by a cybersecurity operations ex-
pert with certification in security architecture and experience
resolving incident response from nation-state and APT attack
groups. This review found that experiment results matched the
expected results for the simulated networks. Relevant criteria
for this decision include:
• Risk-adverse agent takes very few steps when the entire

network is exposed.
• Risk-accepting agent will achieve a greater reward in

more secure networks because of its ability to move faster



Fig. 3: Network diagram showing Best Path in Table I. The
color of the edge reflects risk preference and the color of nodes
encodes the subnet.

than stealthier actors.
• The optimal path will often be the same for various risk

profiles, matching the A2C modeling convergence trends.
• Utilizing misconfigurations of security services within a

network is a high-likelihood of success for attackers.
• Data exploitation is more likely through servers and

services than through client workstations.
• When operating in more secure networks, the agent

consistently creates simple exfiltration paths but requires
additional unsuccessful scanning actions to achieve this
same convergence.

B. Remarks on Payload

Within the current scope of this work, there is no considera-
tion for the size of the payload extracted, or the rate at which it
is removed. If the payload is a small amount of (critical) data,
this simulation can be considered an approximation of reality.
If the amount of data exfiltrated becomes large enough that this
approximation fails, then additional modeling considerations
need to be considered, such as encoding rates of transfer and
amount of data into the states of the environment. Payload
size, while being a calculable statistic for security operations,
is often measured for security in a binary manner. If the
payload size from one server to another server, or for one
firewall at a given time of day, is of sufficient variation from
the expected thresholds, an alert will trigger for security or
network operations. While malicious actions can create this,
non-malicious actions can create this as well. Common ITS

Fig. 4: Network diagram showing Second Best Path in Table
I. The color of the edge reflects risk preference and the color
of nodes encodes the subnet.

operations such as database backups, system update down-
loads, or unexpected network configuration changes can each
create a pattern that alerts security or network teams to heavy
payloads on a network. Without a way to compensate for these
additional variables, the value of adding payload sizes in this
work was negligible.

VIII. CONCLUSION

In this paper, we have provided security practitioners and
network defenders a quantitative methodology using RL to
identify optimal paths for data exfiltration. In our experiments,
the presented RL approach identified the most likely hosts and
services used when exfiltrating data and captured metrics used
in network risk assessments. The strength of this approach
was validated through identification of intentional network
misconfigurations that mimic real-world vulnerabilities.

Future work should consider integration with other RL
for penetration testing tasks. In addition, expanding the risk
formalism to increase its sophistication and maturity will
drive increased applicability and relevance. Review of payload
size extraction and subsequent rates are also should also be
included for future studies.
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